Metamath Proof Explorer


Theorem eluz4nn

Description: An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023)

Ref Expression
Assertion eluz4nn ( 𝑋 ∈ ( ℤ ‘ 4 ) → 𝑋 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 eluz4eluz2 ( 𝑋 ∈ ( ℤ ‘ 4 ) → 𝑋 ∈ ( ℤ ‘ 2 ) )
2 eluz2nn ( 𝑋 ∈ ( ℤ ‘ 2 ) → 𝑋 ∈ ℕ )
3 1 2 syl ( 𝑋 ∈ ( ℤ ‘ 4 ) → 𝑋 ∈ ℕ )