Metamath Proof Explorer


Theorem eluz5nn

Description: An integer greater than or equal to 5 is a positive integer. (Contributed by AV, 22-Nov-2025)

Ref Expression
Assertion eluz5nn ( 𝑁 ∈ ( ℤ ‘ 5 ) → 𝑁 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 uzuzle35 ( 𝑁 ∈ ( ℤ ‘ 5 ) → 𝑁 ∈ ( ℤ ‘ 3 ) )
2 eluz3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
3 1 2 syl ( 𝑁 ∈ ( ℤ ‘ 5 ) → 𝑁 ∈ ℕ )