Metamath Proof Explorer


Theorem eluzaddi

Description: Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007) Shorten and remove M e. ZZ hypothesis. (Revised by SN, 7-Feb-2025)

Ref Expression
Hypothesis eluzaddi.1 𝐾 ∈ ℤ
Assertion eluzaddi ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ ‘ ( 𝑀 + 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 eluzaddi.1 𝐾 ∈ ℤ
2 eluzadd ( ( 𝑁 ∈ ( ℤ𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ ‘ ( 𝑀 + 𝐾 ) ) )
3 1 2 mpan2 ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ ‘ ( 𝑀 + 𝐾 ) ) )