Metamath Proof Explorer


Theorem eluzd

Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eluzd.1 𝑍 = ( ℤ𝑀 )
eluzd.2 ( 𝜑𝑀 ∈ ℤ )
eluzd.3 ( 𝜑𝑁 ∈ ℤ )
eluzd.4 ( 𝜑𝑀𝑁 )
Assertion eluzd ( 𝜑𝑁𝑍 )

Proof

Step Hyp Ref Expression
1 eluzd.1 𝑍 = ( ℤ𝑀 )
2 eluzd.2 ( 𝜑𝑀 ∈ ℤ )
3 eluzd.3 ( 𝜑𝑁 ∈ ℤ )
4 eluzd.4 ( 𝜑𝑀𝑁 )
5 eluz2 ( 𝑁 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) )
6 2 3 4 5 syl3anbrc ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
7 6 1 eleqtrrdi ( 𝜑𝑁𝑍 )