Metamath Proof Explorer
Description: Membership in an upper set of integers. (Contributed by Glauco
Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
eluzd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
|
eluzd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
eluzd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
|
eluzd.4 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
|
Assertion |
eluzd |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eluzd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
eluzd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
eluzd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
eluzd.4 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
5 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
6 |
2 3 4 5
|
syl3anbrc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
6 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |