Metamath Proof Explorer


Theorem eluzel2

Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ dom ℤ )
2 uzf : ℤ ⟶ 𝒫 ℤ
3 2 fdmi dom ℤ = ℤ
4 1 3 eleqtrdi ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )