Metamath Proof Explorer


Theorem eluzelre

Description: A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013)

Ref Expression
Assertion eluzelre ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 eluzelz ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℤ )
2 1 zred ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℝ )