Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eluzelz2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
Assertion | eluzelz2 | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | 1 | eleq2i | ⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 | 2 | biimpi | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
5 | 3 4 | syl | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |