Metamath Proof Explorer


Theorem eluzelz2

Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis eluzelz2.1 𝑍 = ( ℤ𝑀 )
Assertion eluzelz2 ( 𝑁𝑍𝑁 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 eluzelz2.1 𝑍 = ( ℤ𝑀 )
2 1 eleq2i ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
3 2 biimpi ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
4 eluzelz ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℤ )
5 3 4 syl ( 𝑁𝑍𝑁 ∈ ℤ )