Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eluzelz2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | eluzelz2 | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 | 2 | biimpi | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |