Metamath Proof Explorer
Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 8-Apr-2021)
|
|
Ref |
Expression |
|
Hypothesis |
eluzelzd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
|
Assertion |
eluzelzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelzd.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |