Metamath Proof Explorer


Theorem eluzelzd

Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis eluzelzd.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
Assertion eluzelzd ( 𝜑𝑁 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 eluzelzd.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 eluzelz ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℤ )
3 1 2 syl ( 𝜑𝑁 ∈ ℤ )