Metamath Proof Explorer


Theorem eluzfz2

Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion eluzfz2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 eluzelz ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℤ )
2 uzid ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ𝑁 ) )
3 1 2 syl ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( ℤ𝑁 ) )
4 eluzfz ( ( 𝑁 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝑁 ) ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )
5 3 4 mpdan ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )