| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 | 2 | nn0zd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 4 | 1 3 | zsubcld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  −  𝑁 )  ∈  ℤ ) | 
						
							| 5 | 1 | zred | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ℝ ) | 
						
							| 6 | 2 | nn0red | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 7 | 5 6 | readdcld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  +  𝑁 )  ∈  ℝ ) | 
						
							| 8 |  | nn0addge1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 9 | 5 8 | sylancom | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ≤  ( 𝑀  +  𝑁 ) ) | 
						
							| 10 | 5 7 6 9 | lesub1dd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  −  𝑁 )  ≤  ( ( 𝑀  +  𝑁 )  −  𝑁 ) ) | 
						
							| 11 | 5 | recnd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ℂ ) | 
						
							| 12 | 6 | recnd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 13 | 11 12 | pncand | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑀  +  𝑁 )  −  𝑁 )  =  𝑀 ) | 
						
							| 14 | 10 13 | breqtrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  −  𝑁 )  ≤  𝑀 ) | 
						
							| 15 |  | eluz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  𝑁 ) )  ↔  ( ( 𝑀  −  𝑁 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝑀  −  𝑁 )  ≤  𝑀 ) ) | 
						
							| 16 | 4 1 14 15 | syl3anbrc | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  𝑁 ) ) ) |