Description: Membership in a nonnegative upper set of integers implies membership in NN0 . (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluznn0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |