Metamath Proof Explorer


Theorem eluzp1l

Description: Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005)

Ref Expression
Assertion eluzp1l ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 < 𝑁 )

Proof

Step Hyp Ref Expression
1 eluzle ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 + 1 ) ≤ 𝑁 )
2 1 adantl ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 + 1 ) ≤ 𝑁 )
3 eluzelz ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ℤ )
4 zltp1le ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )
5 3 4 sylan2 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )
6 2 5 mpbird ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 < 𝑁 )