Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ∈ ℤ ) |
3 |
|
simpr2 |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐶 ∈ ℤ ) |
4 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ∈ ℝ ) |
6 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) → 𝐴 ∈ ℝ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐴 ∈ ℝ ) |
9 |
|
zre |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
12 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ≤ 𝐴 ) |
13 |
|
simpr3 |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐴 ≤ 𝐶 ) |
14 |
5 8 11 12 13
|
letrd |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐵 ≤ 𝐶 ) |
15 |
|
eluz2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) |
16 |
2 3 14 15
|
syl3anbrc |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
17 |
16
|
ex |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
18 |
1 17
|
syl5bi |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |