Metamath Proof Explorer


Theorem eluzuzle

Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018)

Ref Expression
Assertion eluzuzle ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) → ( 𝐶 ∈ ( ℤ𝐴 ) → 𝐶 ∈ ( ℤ𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eluz2 ( 𝐶 ∈ ( ℤ𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) )
2 simpll ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐵 ∈ ℤ )
3 simpr2 ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐶 ∈ ℤ )
4 zre ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ )
5 4 ad2antrr ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐵 ∈ ℝ )
6 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
7 6 3ad2ant1 ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) → 𝐴 ∈ ℝ )
8 7 adantl ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐴 ∈ ℝ )
9 zre ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ )
10 9 3ad2ant2 ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) → 𝐶 ∈ ℝ )
11 10 adantl ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐶 ∈ ℝ )
12 simplr ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐵𝐴 )
13 simpr3 ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐴𝐶 )
14 5 8 11 12 13 letrd ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐵𝐶 )
15 eluz2 ( 𝐶 ∈ ( ℤ𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶 ) )
16 2 3 14 15 syl3anbrc ( ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) ) → 𝐶 ∈ ( ℤ𝐵 ) )
17 16 ex ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) → ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶 ) → 𝐶 ∈ ( ℤ𝐵 ) ) )
18 1 17 syl5bi ( ( 𝐵 ∈ ℤ ∧ 𝐵𝐴 ) → ( 𝐶 ∈ ( ℤ𝐴 ) → 𝐶 ∈ ( ℤ𝐵 ) ) )