Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elvv | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | pm3.2i | ⊢ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) |
| 5 | 4 | biantru | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ↔ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) ) |
| 6 | 5 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) ) |
| 7 | 1 6 | bitr4i | ⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |