Metamath Proof Explorer


Theorem elvv

Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elvv ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )

Proof

Step Hyp Ref Expression
1 elxp ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 pm3.2i ( 𝑥 ∈ V ∧ 𝑦 ∈ V )
5 4 biantru ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
6 5 2exbii ( ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
7 1 6 bitr4i ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )