Metamath Proof Explorer


Theorem elvvuni

Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion elvvuni ( 𝐴 ∈ ( V × V ) → 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 elvv ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 uniop 𝑥 , 𝑦 ⟩ = { 𝑥 , 𝑦 }
5 2 3 opi2 { 𝑥 , 𝑦 } ∈ ⟨ 𝑥 , 𝑦
6 4 5 eqeltri 𝑥 , 𝑦 ⟩ ∈ ⟨ 𝑥 , 𝑦
7 unieq ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = 𝑥 , 𝑦 ⟩ )
8 id ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ )
9 7 8 eleq12d ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴𝐴𝑥 , 𝑦 ⟩ ∈ ⟨ 𝑥 , 𝑦 ⟩ ) )
10 6 9 mpbiri ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴𝐴 )
11 10 exlimivv ( ∃ 𝑥𝑦 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐴𝐴 )
12 1 11 sylbi ( 𝐴 ∈ ( V × V ) → 𝐴𝐴 )