Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ V ) |
2 |
|
fvex |
⊢ ( cf ‘ 𝐴 ) ∈ V |
3 |
|
eleq1 |
⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → ( ( cf ‘ 𝐴 ) ∈ V ↔ 𝐴 ∈ V ) ) |
4 |
2 3
|
mpbii |
⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ V ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → 𝐴 ∈ V ) |
6 |
|
neeq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
7 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( cf ‘ 𝑧 ) = ( cf ‘ 𝐴 ) ) |
8 |
|
eqeq12 |
⊢ ( ( ( cf ‘ 𝑧 ) = ( cf ‘ 𝐴 ) ∧ 𝑧 = 𝐴 ) → ( ( cf ‘ 𝑧 ) = 𝑧 ↔ ( cf ‘ 𝐴 ) = 𝐴 ) ) |
9 |
7 8
|
mpancom |
⊢ ( 𝑧 = 𝐴 → ( ( cf ‘ 𝑧 ) = 𝑧 ↔ ( cf ‘ 𝐴 ) = 𝐴 ) ) |
10 |
|
rexeq |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
11 |
10
|
raleqbi1dv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
12 |
6 9 11
|
3anbi123d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ≠ ∅ ∧ ( cf ‘ 𝑧 ) = 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ) ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) ) |
13 |
|
df-wina |
⊢ Inaccw = { 𝑧 ∣ ( 𝑧 ≠ ∅ ∧ ( cf ‘ 𝑧 ) = 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ) } |
14 |
12 13
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) ) |
15 |
1 5 14
|
pm5.21nii |
⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |