| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2on.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wspthnon | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 ) ) | 
						
							| 3 | 2 | biimpi | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 ) ) | 
						
							| 4 | 1 | elwwlks2on | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉 ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 7 | 6 | biimpa | ⊢ ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) | 
						
							| 8 | 5 7 | jca | ⊢ ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 11 | 10 | com12 | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 12 | 11 | reximdv | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 13 | 12 | a1i13 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊  →  ( ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) ) ) | 
						
							| 14 | 13 | com24 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) ) ) | 
						
							| 15 | 4 14 | sylbid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  →  ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) ) ) | 
						
							| 16 | 15 | impd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) ) | 
						
							| 17 | 16 | com23 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) ) | 
						
							| 18 | 3 17 | mpdi | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 19 | 6 | biimpar | ⊢ ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 21 | 20 | rexlimdva | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 22 | 18 21 | impbid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) |