| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elwwlks2on.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
wspthnon |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ∧ ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 ) ) |
| 3 |
2
|
biimpi |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ∧ ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 ) ) |
| 4 |
1
|
elwwlks2ons3 |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) |
| 5 |
4
|
a1i |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) |
| 8 |
7
|
biimpa |
⊢ ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) |
| 9 |
6 8
|
jca |
⊢ ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) |
| 10 |
9
|
ex |
⊢ ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
| 12 |
11
|
com12 |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) → ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
| 13 |
12
|
reximdv |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
| 14 |
13
|
a1i13 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 → ( ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) ) ) |
| 15 |
14
|
com24 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) → ( ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) ) ) |
| 16 |
5 15
|
sylbid |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) → ( ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) ) ) |
| 17 |
16
|
impd |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ∧ ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) ) |
| 18 |
17
|
com23 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ∧ ∃ 𝑏 𝑏 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑊 ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) ) |
| 19 |
3 18
|
mpdi |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
| 20 |
7
|
biimpar |
⊢ ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) |
| 21 |
20
|
a1i |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) |
| 22 |
21
|
rexlimdva |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) |
| 23 |
19 22
|
impbid |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |