Metamath Proof Explorer


Theorem elwspths2spth

Description: A simple path of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 28-Feb-2018) (Revised by AV, 18-May-2021) (Proof shortened by AV, 16-Mar-2022)

Ref Expression
Hypothesis elwwlks2.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion elwspths2spth ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 elwwlks2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 wspthsnwspthsnon ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎𝑉𝑐𝑉 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) )
3 2 a1i ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎𝑉𝑐𝑉 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) )
4 1 elwspths2on ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉 ) → ( 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑏𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) )
5 4 3expb ( ( 𝐺 ∈ UPGraph ∧ ( 𝑎𝑉𝑐𝑉 ) ) → ( 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑏𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) )
6 5 2rexbidva ( 𝐺 ∈ UPGraph → ( ∃ 𝑎𝑉𝑐𝑉 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑎𝑉𝑐𝑉𝑏𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) )
7 rexcom ( ∃ 𝑐𝑉𝑏𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) )
8 wspthnon ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) )
9 ancom ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ↔ ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) )
10 19.41v ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) )
11 9 10 bitr4i ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ↔ ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) )
12 simpr ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) → 𝑎𝑉 )
13 simpr ( ( 𝑏𝑉𝑐𝑉 ) → 𝑐𝑉 )
14 12 13 anim12i ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( 𝑎𝑉𝑐𝑉 ) )
15 vex 𝑓 ∈ V
16 s3cli ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ Word V
17 15 16 pm3.2i ( 𝑓 ∈ V ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ Word V )
18 1 isspthonpth ( ( ( 𝑎𝑉𝑐𝑉 ) ∧ ( 𝑓 ∈ V ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ Word V ) ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ) )
19 14 17 18 sylancl ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ) )
20 wwlknon ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 2 WWalksN 𝐺 ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) )
21 2nn0 2 ∈ ℕ0
22 iswwlksn ( 2 ∈ ℕ0 → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 2 WWalksN 𝐺 ) ↔ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ) )
23 21 22 mp1i ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 2 WWalksN 𝐺 ) ↔ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ) )
24 23 3anbi1d ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 2 WWalksN 𝐺 ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ↔ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) )
25 20 24 syl5bb ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) )
26 19 25 anbi12d ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) )
27 26 adantr ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) )
28 16 a1i ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ Word V )
29 simprl1 ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) → 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ )
30 spthiswlk ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ → 𝑓 ( Walks ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ )
31 wlklenvm1 ( 𝑓 ( Walks ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) )
32 simpl ( ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) )
33 oveq1 ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) → ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) = ( ( 2 + 1 ) − 1 ) )
34 2cn 2 ∈ ℂ
35 pncan1 ( 2 ∈ ℂ → ( ( 2 + 1 ) − 1 ) = 2 )
36 34 35 ax-mp ( ( 2 + 1 ) − 1 ) = 2
37 33 36 eqtrdi ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) → ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) = 2 )
38 37 adantl ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) → ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) = 2 )
39 38 3ad2ant1 ( ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) → ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) = 2 )
40 39 adantl ( ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) → ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) = 2 )
41 32 40 eqtrd ( ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) → ( ♯ ‘ 𝑓 ) = 2 )
42 41 ex ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) − 1 ) → ( ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) → ( ♯ ‘ 𝑓 ) = 2 ) )
43 30 31 42 3syl ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) → ( ♯ ‘ 𝑓 ) = 2 ) )
44 43 3ad2ant1 ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) → ( ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) → ( ♯ ‘ 𝑓 ) = 2 ) )
45 44 imp ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) → ( ♯ ‘ 𝑓 ) = 2 )
46 45 adantl ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) → ( ♯ ‘ 𝑓 ) = 2 )
47 s3fv0 ( 𝑎 ∈ V → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 )
48 47 elv ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎
49 48 eqcomi 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 )
50 s3fv1 ( 𝑏 ∈ V → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) = 𝑏 )
51 50 elv ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) = 𝑏
52 51 eqcomi 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 )
53 s3fv2 ( 𝑐 ∈ V → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 )
54 53 elv ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐
55 54 eqcomi 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 )
56 49 52 55 3pm3.2i ( 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ∧ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ∧ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) )
57 56 a1i ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) → ( 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ∧ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ∧ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) ) )
58 29 46 57 3jca ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ∧ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ∧ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) ) ) )
59 breq2 ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) )
60 fveq1 ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑝 ‘ 0 ) = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) )
61 60 eqeq2d ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑎 = ( 𝑝 ‘ 0 ) ↔ 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ) )
62 fveq1 ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑝 ‘ 1 ) = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) )
63 62 eqeq2d ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑏 = ( 𝑝 ‘ 1 ) ↔ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ) )
64 fveq1 ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑝 ‘ 2 ) = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) )
65 64 eqeq2d ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑐 = ( 𝑝 ‘ 2 ) ↔ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) ) )
66 61 63 65 3anbi123d ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ↔ ( 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ∧ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ∧ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) ) ) )
67 59 66 3anbi13d ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ∧ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ∧ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) ) ) ) )
68 67 ad2antlr ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) ∧ 𝑏 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 1 ) ∧ 𝑐 = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) ) ) ) )
69 58 68 mpbird ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) )
70 69 ex ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
71 28 70 spcimedv ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) → ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
72 spthiswlk ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝𝑓 ( Walks ‘ 𝐺 ) 𝑝 )
73 wlklenvp1 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) )
74 oveq1 ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = ( 2 + 1 ) )
75 2p1e3 ( 2 + 1 ) = 3
76 74 75 eqtrdi ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = 3 )
77 76 eqeq2d ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ↔ ( ♯ ‘ 𝑝 ) = 3 ) )
78 77 biimpcd ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) )
79 72 73 78 3syl ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) )
80 79 imp ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ♯ ‘ 𝑝 ) = 3 )
81 80 3adant3 ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ♯ ‘ 𝑝 ) = 3 )
82 81 adantl ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ♯ ‘ 𝑝 ) = 3 )
83 eqcom ( 𝑎 = ( 𝑝 ‘ 0 ) ↔ ( 𝑝 ‘ 0 ) = 𝑎 )
84 eqcom ( 𝑏 = ( 𝑝 ‘ 1 ) ↔ ( 𝑝 ‘ 1 ) = 𝑏 )
85 eqcom ( 𝑐 = ( 𝑝 ‘ 2 ) ↔ ( 𝑝 ‘ 2 ) = 𝑐 )
86 83 84 85 3anbi123i ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ↔ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) )
87 86 biimpi ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) )
88 87 3ad2ant3 ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) )
89 88 adantl ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) )
90 82 89 jca ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) )
91 1 wlkpwrd ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝𝑝 ∈ Word 𝑉 )
92 72 91 syl ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝𝑝 ∈ Word 𝑉 )
93 92 3ad2ant1 ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → 𝑝 ∈ Word 𝑉 )
94 12 anim1i ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( 𝑎𝑉 ∧ ( 𝑏𝑉𝑐𝑉 ) ) )
95 3anass ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ↔ ( 𝑎𝑉 ∧ ( 𝑏𝑉𝑐𝑉 ) ) )
96 94 95 sylibr ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) )
97 eqwrds3 ( ( 𝑝 ∈ Word 𝑉 ∧ ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ) → ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) )
98 93 96 97 syl2anr ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) )
99 90 98 mpbird ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ )
100 59 biimpcd ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) )
101 100 3ad2ant1 ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) )
102 101 adantl ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) )
103 102 imp ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ )
104 48 a1i ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 )
105 fveq2 ( ( ♯ ‘ 𝑓 ) = 2 → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) )
106 105 54 eqtrdi ( ( ♯ ‘ 𝑓 ) = 2 → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 )
107 106 3ad2ant2 ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 )
108 107 ad2antlr ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 )
109 103 104 108 3jca ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) )
110 wlkiswwlks1 ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
111 110 adantr ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
112 111 adantr ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
113 72 112 syl5com ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
114 113 3ad2ant1 ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
115 114 impcom ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) )
116 115 adantr ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) )
117 eleq1 ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( 𝑝 ∈ ( WWalks ‘ 𝐺 ) ↔ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ) )
118 117 bicomd ( 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
119 118 adantl ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) )
120 116 119 mpbird ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) )
121 s3len ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = 3
122 df-3 3 = ( 2 + 1 )
123 121 122 eqtri ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 )
124 120 123 jctir ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) )
125 54 a1i ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 )
126 124 104 125 3jca ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) )
127 109 126 jca ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) )
128 99 127 mpdan ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) )
129 128 ex ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) )
130 129 exlimdv ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ) )
131 71 130 impbid ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ↔ ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
132 131 adantr ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) = ( 2 + 1 ) ) ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 0 ) = 𝑎 ∧ ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ‘ 2 ) = 𝑐 ) ) ↔ ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
133 27 132 bitrd ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
134 133 exbidv ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
135 11 134 syl5bb ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) ↔ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
136 8 135 syl5bb ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) ∧ 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ) → ( ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) )
137 136 pm5.32da ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) ∧ ( 𝑏𝑉𝑐𝑉 ) ) → ( ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) )
138 137 2rexbidva ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) → ( ∃ 𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) )
139 7 138 syl5bb ( ( 𝐺 ∈ UPGraph ∧ 𝑎𝑉 ) → ( ∃ 𝑐𝑉𝑏𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) )
140 139 rexbidva ( 𝐺 ∈ UPGraph → ( ∃ 𝑎𝑉𝑐𝑉𝑏𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) )
141 3 6 140 3bitrd ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎𝑉𝑏𝑉𝑐𝑉 ( 𝑊 = ⟨“ 𝑎 𝑏 𝑐 ”⟩ ∧ ∃ 𝑓𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) )