Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
wspthsnwspthsnon |
⊢ ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) |
3 |
2
|
a1i |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) |
4 |
1
|
elwspths2on |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) ) |
5 |
4
|
3expb |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) ) |
6 |
5
|
2rexbidva |
⊢ ( 𝐺 ∈ UPGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) ) |
7 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ) |
8 |
|
wspthnon |
⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) |
9 |
|
ancom |
⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ↔ ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ) |
10 |
|
19.41v |
⊢ ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ↔ ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
13 |
|
simpr |
⊢ ( ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
14 |
12 13
|
anim12i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) |
15 |
|
vex |
⊢ 𝑓 ∈ V |
16 |
|
s3cli |
⊢ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word V |
17 |
15 16
|
pm3.2i |
⊢ ( 𝑓 ∈ V ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word V ) |
18 |
1
|
isspthonpth |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑓 ∈ V ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word V ) ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ) ) |
19 |
14 17 18
|
sylancl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ) ) |
20 |
|
wwlknon |
⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 2 WWalksN 𝐺 ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) |
21 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
22 |
|
iswwlksn |
⊢ ( 2 ∈ ℕ0 → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 2 WWalksN 𝐺 ) ↔ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ) ) |
23 |
21 22
|
mp1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 2 WWalksN 𝐺 ) ↔ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ) ) |
24 |
23
|
3anbi1d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 2 WWalksN 𝐺 ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ↔ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) |
25 |
20 24
|
syl5bb |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) |
26 |
19 25
|
anbi12d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) ) |
28 |
16
|
a1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word V ) |
29 |
|
simprl1 |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) → 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
30 |
|
spthiswlk |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
31 |
|
wlklenvm1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) ) |
32 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) ) |
33 |
|
oveq1 |
⊢ ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) → ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) = ( ( 2 + 1 ) − 1 ) ) |
34 |
|
2cn |
⊢ 2 ∈ ℂ |
35 |
|
pncan1 |
⊢ ( 2 ∈ ℂ → ( ( 2 + 1 ) − 1 ) = 2 ) |
36 |
34 35
|
ax-mp |
⊢ ( ( 2 + 1 ) − 1 ) = 2 |
37 |
33 36
|
eqtrdi |
⊢ ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) → ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) = 2 ) |
38 |
37
|
adantl |
⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) → ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) = 2 ) |
39 |
38
|
3ad2ant1 |
⊢ ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) → ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) = 2 ) |
40 |
39
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) → ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) = 2 ) |
41 |
32 40
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) → ( ♯ ‘ 𝑓 ) = 2 ) |
42 |
41
|
ex |
⊢ ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) − 1 ) → ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) → ( ♯ ‘ 𝑓 ) = 2 ) ) |
43 |
30 31 42
|
3syl |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 → ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) → ( ♯ ‘ 𝑓 ) = 2 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) → ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) → ( ♯ ‘ 𝑓 ) = 2 ) ) |
45 |
44
|
imp |
⊢ ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) → ( ♯ ‘ 𝑓 ) = 2 ) |
46 |
45
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) → ( ♯ ‘ 𝑓 ) = 2 ) |
47 |
|
s3fv0 |
⊢ ( 𝑎 ∈ V → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ) |
48 |
47
|
elv |
⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 |
49 |
48
|
eqcomi |
⊢ 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) |
50 |
|
s3fv1 |
⊢ ( 𝑏 ∈ V → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) = 𝑏 ) |
51 |
50
|
elv |
⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) = 𝑏 |
52 |
51
|
eqcomi |
⊢ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) |
53 |
|
s3fv2 |
⊢ ( 𝑐 ∈ V → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) |
54 |
53
|
elv |
⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 |
55 |
54
|
eqcomi |
⊢ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) |
56 |
49 52 55
|
3pm3.2i |
⊢ ( 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ∧ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ∧ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) |
57 |
56
|
a1i |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) → ( 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ∧ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ∧ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) |
58 |
29 46 57
|
3jca |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ∧ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ∧ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) |
59 |
|
breq2 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ↔ 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) |
60 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ‘ 0 ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑎 = ( 𝑝 ‘ 0 ) ↔ 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) ) |
62 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ‘ 1 ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) |
63 |
62
|
eqeq2d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑏 = ( 𝑝 ‘ 1 ) ↔ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) ) |
64 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ‘ 2 ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) |
65 |
64
|
eqeq2d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑐 = ( 𝑝 ‘ 2 ) ↔ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) |
66 |
61 63 65
|
3anbi123d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ↔ ( 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ∧ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ∧ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) |
67 |
59 66
|
3anbi13d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ∧ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ∧ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) ) |
68 |
67
|
ad2antlr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ∧ 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ∧ 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) ) |
69 |
58 68
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) |
70 |
69
|
ex |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
71 |
28 70
|
spcimedv |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) → ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
72 |
|
spthiswlk |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
73 |
|
wlklenvp1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) |
74 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = ( 2 + 1 ) ) |
75 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
76 |
74 75
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = 3 ) |
77 |
76
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ↔ ( ♯ ‘ 𝑝 ) = 3 ) ) |
78 |
77
|
biimpcd |
⊢ ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) ) |
79 |
72 73 78
|
3syl |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) ) |
80 |
79
|
imp |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ♯ ‘ 𝑝 ) = 3 ) |
81 |
80
|
3adant3 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ♯ ‘ 𝑝 ) = 3 ) |
82 |
81
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ♯ ‘ 𝑝 ) = 3 ) |
83 |
|
eqcom |
⊢ ( 𝑎 = ( 𝑝 ‘ 0 ) ↔ ( 𝑝 ‘ 0 ) = 𝑎 ) |
84 |
|
eqcom |
⊢ ( 𝑏 = ( 𝑝 ‘ 1 ) ↔ ( 𝑝 ‘ 1 ) = 𝑏 ) |
85 |
|
eqcom |
⊢ ( 𝑐 = ( 𝑝 ‘ 2 ) ↔ ( 𝑝 ‘ 2 ) = 𝑐 ) |
86 |
83 84 85
|
3anbi123i |
⊢ ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ↔ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) |
87 |
86
|
biimpi |
⊢ ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) |
88 |
87
|
3ad2ant3 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) |
89 |
88
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) |
90 |
82 89
|
jca |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) |
91 |
1
|
wlkpwrd |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ Word 𝑉 ) |
92 |
72 91
|
syl |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → 𝑝 ∈ Word 𝑉 ) |
93 |
92
|
3ad2ant1 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → 𝑝 ∈ Word 𝑉 ) |
94 |
12
|
anim1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∈ 𝑉 ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ) |
95 |
|
3anass |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ↔ ( 𝑎 ∈ 𝑉 ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ) |
96 |
94 95
|
sylibr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) |
97 |
|
eqwrds3 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) ) |
98 |
93 96 97
|
syl2anr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) ) |
99 |
90 98
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
100 |
59
|
biimpcd |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) |
101 |
100
|
3ad2ant1 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) |
102 |
101
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) |
103 |
102
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
104 |
48
|
a1i |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ) |
105 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) |
106 |
105 54
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) |
107 |
106
|
3ad2ant2 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) |
108 |
107
|
ad2antlr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) |
109 |
103 104 108
|
3jca |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ) |
110 |
|
wlkiswwlks1 |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
111 |
110
|
adantr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
112 |
111
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
113 |
72 112
|
syl5com |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
114 |
113
|
3ad2ant1 |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
115 |
114
|
impcom |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) |
116 |
115
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) |
117 |
|
eleq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ∈ ( WWalks ‘ 𝐺 ) ↔ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ) ) |
118 |
117
|
bicomd |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
119 |
118
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑝 ∈ ( WWalks ‘ 𝐺 ) ) ) |
120 |
116 119
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ) |
121 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = 3 |
122 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
123 |
121 122
|
eqtri |
⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) |
124 |
120 123
|
jctir |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ) |
125 |
54
|
a1i |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) |
126 |
124 104 125
|
3jca |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) |
127 |
109 126
|
jca |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) |
128 |
99 127
|
mpdan |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) |
129 |
128
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) ) |
130 |
129
|
exlimdv |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ) ) |
131 |
71 130
|
impbid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ↔ ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
132 |
131
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑐 ) ∧ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 ) = ( 2 + 1 ) ) ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ∧ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) ) ↔ ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
133 |
27 132
|
bitrd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
134 |
133
|
exbidv |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
135 |
11 134
|
syl5bb |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ↔ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
136 |
8 135
|
syl5bb |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
137 |
136
|
pm5.32da |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
138 |
137
|
2rexbidva |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
139 |
7 138
|
syl5bb |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
140 |
139
|
rexbidva |
⊢ ( 𝐺 ∈ UPGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ ( 𝑎 ( 2 WSPathsNOn 𝐺 ) 𝑐 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
141 |
3 6 140
|
3bitrd |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |