| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elwwlks2.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							wspthsnwspthsnon | 
							⊢ ( 𝑊  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑊  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							elwspths2on | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3expb | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							2rexbidva | 
							⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							rexcom | 
							⊢ ( ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							wspthnon | 
							⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ancom | 
							⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  ↔  ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							19.41v | 
							⊢ ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bitr4i | 
							⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  ↔  ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  𝑎  ∈  𝑉 )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  𝑐  ∈  𝑉 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							anim12i | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							vex | 
							⊢ 𝑓  ∈  V  | 
						
						
							| 16 | 
							
								
							 | 
							s3cli | 
							⊢ 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V  | 
						
						
							| 17 | 
							
								15 16
							 | 
							pm3.2i | 
							⊢ ( 𝑓  ∈  V  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V )  | 
						
						
							| 18 | 
							
								1
							 | 
							isspthonpth | 
							⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ∧  ( 𝑓  ∈  V  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V ) )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) ) )  | 
						
						
							| 19 | 
							
								14 17 18
							 | 
							sylancl | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							wwlknon | 
							⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 22 | 
							
								
							 | 
							iswwlksn | 
							⊢ ( 2  ∈  ℕ0  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							mp1i | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3anbi1d | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  ↔  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  | 
						
						
							| 25 | 
							
								20 24
							 | 
							bitrid | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							anbi12d | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) )  | 
						
						
							| 28 | 
							
								16
							 | 
							a1i | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V )  | 
						
						
							| 29 | 
							
								
							 | 
							simprl1 | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  | 
						
						
							| 30 | 
							
								
							 | 
							spthiswlk | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  | 
						
						
							| 31 | 
							
								
							 | 
							wlklenvm1 | 
							⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  ( ( 2  +  1 )  −  1 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 35 | 
							
								
							 | 
							pncan1 | 
							⊢ ( 2  ∈  ℂ  →  ( ( 2  +  1 )  −  1 )  =  2 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							ax-mp | 
							⊢ ( ( 2  +  1 )  −  1 )  =  2  | 
						
						
							| 37 | 
							
								33 36
							 | 
							eqtrdi | 
							⊢ ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 )  | 
						
						
							| 39 | 
							
								38
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantl | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							eqtrd | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ♯ ‘ 𝑓 )  =  2 )  | 
						
						
							| 42 | 
							
								41
							 | 
							ex | 
							⊢ ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  →  ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ♯ ‘ 𝑓 )  =  2 ) )  | 
						
						
							| 43 | 
							
								30 31 42
							 | 
							3syl | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ♯ ‘ 𝑓 )  =  2 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  →  ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ♯ ‘ 𝑓 )  =  2 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							imp | 
							⊢ ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ♯ ‘ 𝑓 )  =  2 )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( ♯ ‘ 𝑓 )  =  2 )  | 
						
						
							| 47 | 
							
								
							 | 
							s3fv0 | 
							⊢ ( 𝑎  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎 )  | 
						
						
							| 48 | 
							
								47
							 | 
							elv | 
							⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  | 
						
						
							| 49 | 
							
								48
							 | 
							eqcomi | 
							⊢ 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  | 
						
						
							| 50 | 
							
								
							 | 
							s3fv1 | 
							⊢ ( 𝑏  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  =  𝑏 )  | 
						
						
							| 51 | 
							
								50
							 | 
							elv | 
							⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  =  𝑏  | 
						
						
							| 52 | 
							
								51
							 | 
							eqcomi | 
							⊢ 𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  | 
						
						
							| 53 | 
							
								
							 | 
							s3fv2 | 
							⊢ ( 𝑐  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  | 
						
						
							| 54 | 
							
								53
							 | 
							elv | 
							⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐  | 
						
						
							| 55 | 
							
								54
							 | 
							eqcomi | 
							⊢ 𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  | 
						
						
							| 56 | 
							
								49 52 55
							 | 
							3pm3.2i | 
							⊢ ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) )  | 
						
						
							| 58 | 
							
								29 46 57
							 | 
							3jca | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ↔  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 0 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							eqeq2d | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑎  =  ( 𝑝 ‘ 0 )  ↔  𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 1 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							eqeq2d | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑏  =  ( 𝑝 ‘ 1 )  ↔  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 2 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							eqeq2d | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑐  =  ( 𝑝 ‘ 2 )  ↔  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) )  | 
						
						
							| 66 | 
							
								61 63 65
							 | 
							3anbi123d | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  ↔  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) )  | 
						
						
							| 67 | 
							
								59 66
							 | 
							3anbi13d | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							ad2antlr | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) )  | 
						
						
							| 69 | 
							
								58 68
							 | 
							mpbird | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							ex | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 71 | 
							
								28 70
							 | 
							spcimedv | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							spthiswlk | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 )  | 
						
						
							| 73 | 
							
								
							 | 
							wlklenvp1 | 
							⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  ( 2  +  1 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							2p1e3 | 
							⊢ ( 2  +  1 )  =  3  | 
						
						
							| 76 | 
							
								74 75
							 | 
							eqtrdi | 
							⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  3 )  | 
						
						
							| 77 | 
							
								76
							 | 
							eqeq2d | 
							⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ↔  ( ♯ ‘ 𝑝 )  =  3 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							biimpcd | 
							⊢ ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) )  | 
						
						
							| 79 | 
							
								72 73 78
							 | 
							3syl | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							imp | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ♯ ‘ 𝑝 )  =  3 )  | 
						
						
							| 81 | 
							
								80
							 | 
							3adant3 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ♯ ‘ 𝑝 )  =  3 )  | 
						
						
							| 82 | 
							
								81
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ♯ ‘ 𝑝 )  =  3 )  | 
						
						
							| 83 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑎  =  ( 𝑝 ‘ 0 )  ↔  ( 𝑝 ‘ 0 )  =  𝑎 )  | 
						
						
							| 84 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑏  =  ( 𝑝 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  𝑏 )  | 
						
						
							| 85 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑐  =  ( 𝑝 ‘ 2 )  ↔  ( 𝑝 ‘ 2 )  =  𝑐 )  | 
						
						
							| 86 | 
							
								83 84 85
							 | 
							3anbi123i | 
							⊢ ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  ↔  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							biimpi | 
							⊢ ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) )  | 
						
						
							| 90 | 
							
								82 89
							 | 
							jca | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) )  | 
						
						
							| 91 | 
							
								1
							 | 
							wlkpwrd | 
							⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  Word  𝑉 )  | 
						
						
							| 92 | 
							
								72 91
							 | 
							syl | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  𝑝  ∈  Word  𝑉 )  | 
						
						
							| 93 | 
							
								92
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  𝑝  ∈  Word  𝑉 )  | 
						
						
							| 94 | 
							
								12
							 | 
							anim1i | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ↔  ( 𝑎  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) )  | 
						
						
							| 96 | 
							
								94 95
							 | 
							sylibr | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  | 
						
						
							| 97 | 
							
								
							 | 
							eqwrds3 | 
							⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) )  | 
						
						
							| 98 | 
							
								93 96 97
							 | 
							syl2anr | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) )  | 
						
						
							| 99 | 
							
								90 98
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  | 
						
						
							| 100 | 
							
								59
							 | 
							biimpcd | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  | 
						
						
							| 104 | 
							
								48
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎 )  | 
						
						
							| 105 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) )  | 
						
						
							| 106 | 
							
								105 54
							 | 
							eqtrdi | 
							⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  | 
						
						
							| 107 | 
							
								106
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  | 
						
						
							| 108 | 
							
								107
							 | 
							ad2antlr | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  | 
						
						
							| 109 | 
							
								103 104 108
							 | 
							3jca | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) )  | 
						
						
							| 110 | 
							
								
							 | 
							wlkiswwlks1 | 
							⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 113 | 
							
								72 112
							 | 
							syl5com | 
							⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							impcom | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 117 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝  ∈  ( WWalks ‘ 𝐺 )  ↔  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							bicomd | 
							⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ↔  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ↔  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 120 | 
							
								116 119
							 | 
							mpbird | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 121 | 
							
								
							 | 
							s3len | 
							⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3  | 
						
						
							| 122 | 
							
								
							 | 
							df-3 | 
							⊢ 3  =  ( 2  +  1 )  | 
						
						
							| 123 | 
							
								121 122
							 | 
							eqtri | 
							⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 )  | 
						
						
							| 124 | 
							
								120 123
							 | 
							jctir | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) ) )  | 
						
						
							| 125 | 
							
								54
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  | 
						
						
							| 126 | 
							
								124 104 125
							 | 
							3jca | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  | 
						
						
							| 127 | 
							
								109 126
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  | 
						
						
							| 128 | 
							
								99 127
							 | 
							mpdan | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							ex | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							exlimdv | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) )  | 
						
						
							| 131 | 
							
								71 130
							 | 
							impbid | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  ↔  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  ↔  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 133 | 
							
								27 132
							 | 
							bitrd | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							exbidv | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 135 | 
							
								11 134
							 | 
							bitrid | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 136 | 
							
								8 135
							 | 
							bitrid | 
							⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							pm5.32da | 
							⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							2rexbidva | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 139 | 
							
								7 138
							 | 
							bitrid | 
							⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							rexbidva | 
							⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) )  | 
						
						
							| 141 | 
							
								3 6 140
							 | 
							3bitrd | 
							⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑊  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) )  |