Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
wwlksnwwlksnon |
⊢ ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) |
3 |
2
|
a1i |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ) ) |
4 |
1
|
elwwlks2on |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
5 |
4
|
3expb |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑊 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
6 |
5
|
2rexbidva |
⊢ ( 𝐺 ∈ UPGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 2 WWalksNOn 𝐺 ) 𝑐 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
7 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
8 |
|
s3cli |
⊢ 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word V |
9 |
8
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 〈“ 𝑎 𝑏 𝑐 ”〉 ∈ Word V ) |
10 |
|
simplr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
11 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
12 |
10 11
|
eqtr4d |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑊 = 𝑝 ) |
13 |
12
|
breq2d |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ↔ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) |
14 |
13
|
biimpd |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) |
15 |
14
|
com12 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 → ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) |
17 |
16
|
impcom |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
18 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) → ( ♯ ‘ 𝑓 ) = 2 ) |
19 |
|
vex |
⊢ 𝑎 ∈ V |
20 |
|
s3fv0 |
⊢ ( 𝑎 ∈ V → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) = 𝑎 ) |
21 |
20
|
eqcomd |
⊢ ( 𝑎 ∈ V → 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) |
22 |
19 21
|
mp1i |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑎 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) |
23 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ‘ 0 ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) |
24 |
22 23
|
eqtr4d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑎 = ( 𝑝 ‘ 0 ) ) |
25 |
|
vex |
⊢ 𝑏 ∈ V |
26 |
|
s3fv1 |
⊢ ( 𝑏 ∈ V → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) = 𝑏 ) |
27 |
26
|
eqcomd |
⊢ ( 𝑏 ∈ V → 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) |
28 |
25 27
|
mp1i |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑏 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) |
29 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ‘ 1 ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) |
30 |
28 29
|
eqtr4d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑏 = ( 𝑝 ‘ 1 ) ) |
31 |
|
vex |
⊢ 𝑐 ∈ V |
32 |
|
s3fv2 |
⊢ ( 𝑐 ∈ V → ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) = 𝑐 ) |
33 |
32
|
eqcomd |
⊢ ( 𝑐 ∈ V → 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) |
34 |
31 33
|
mp1i |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑐 = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) |
35 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑝 ‘ 2 ) = ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) |
36 |
34 35
|
eqtr4d |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → 𝑐 = ( 𝑝 ‘ 2 ) ) |
37 |
24 30 36
|
3jca |
⊢ ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 → ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) → ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) |
40 |
17 18 39
|
3jca |
⊢ ( ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) |
41 |
40
|
ex |
⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ∧ 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
42 |
9 41
|
spcimedv |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
43 |
|
wlklenvp1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) |
44 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) |
45 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = ( 2 + 1 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ( ♯ ‘ 𝑓 ) + 1 ) = ( 2 + 1 ) ) |
47 |
44 46
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ♯ ‘ 𝑝 ) = ( 2 + 1 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) → ( ♯ ‘ 𝑝 ) = ( 2 + 1 ) ) |
49 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
50 |
48 49
|
eqtrdi |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) → ( ♯ ‘ 𝑝 ) = 3 ) |
51 |
50
|
exp32 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) ) ) |
52 |
43 51
|
mpd |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑝 ) = 3 ) ) |
54 |
53
|
imp |
⊢ ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ♯ ‘ 𝑝 ) = 3 ) |
55 |
|
eqcom |
⊢ ( 𝑎 = ( 𝑝 ‘ 0 ) ↔ ( 𝑝 ‘ 0 ) = 𝑎 ) |
56 |
55
|
biimpi |
⊢ ( 𝑎 = ( 𝑝 ‘ 0 ) → ( 𝑝 ‘ 0 ) = 𝑎 ) |
57 |
|
eqcom |
⊢ ( 𝑏 = ( 𝑝 ‘ 1 ) ↔ ( 𝑝 ‘ 1 ) = 𝑏 ) |
58 |
57
|
biimpi |
⊢ ( 𝑏 = ( 𝑝 ‘ 1 ) → ( 𝑝 ‘ 1 ) = 𝑏 ) |
59 |
|
eqcom |
⊢ ( 𝑐 = ( 𝑝 ‘ 2 ) ↔ ( 𝑝 ‘ 2 ) = 𝑐 ) |
60 |
59
|
biimpi |
⊢ ( 𝑐 = ( 𝑝 ‘ 2 ) → ( 𝑝 ‘ 2 ) = 𝑐 ) |
61 |
56 58 60
|
3anim123i |
⊢ ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) → ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) |
62 |
54 61
|
anim12i |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) |
63 |
1
|
wlkpwrd |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ Word 𝑉 ) |
64 |
|
simpr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
65 |
64
|
anim1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∈ 𝑉 ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ) |
66 |
|
3anass |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ↔ ( 𝑎 ∈ 𝑉 ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ) |
67 |
65 66
|
sylibr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) |
69 |
63 68
|
anim12i |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ) |
71 |
|
eqwrds3 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) ) |
72 |
70 71
|
syl |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ 1 ) = 𝑏 ∧ ( 𝑝 ‘ 2 ) = 𝑐 ) ) ) ) |
73 |
62 72
|
mpbird |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → 𝑝 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
74 |
|
simprr |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) → 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
76 |
73 75
|
eqtr4d |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → 𝑝 = 𝑊 ) |
77 |
76
|
breq2d |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ↔ 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) |
78 |
77
|
biimpd |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) |
79 |
|
simplr |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ♯ ‘ 𝑓 ) = 2 ) |
80 |
78 79
|
jctird |
⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) ∧ ( ♯ ‘ 𝑓 ) = 2 ) ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
81 |
80
|
exp41 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) ) ) |
82 |
81
|
com25 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) → ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) ) ) |
83 |
82
|
pm2.43i |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) → ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) ) |
84 |
83
|
3imp |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
85 |
84
|
com12 |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
86 |
85
|
exlimdv |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
87 |
42 86
|
impbid |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
88 |
87
|
exbidv |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) ∧ 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) |
89 |
88
|
pm5.32da |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ↔ ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
90 |
89
|
2rexbidva |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
91 |
7 90
|
syl5bb |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
92 |
91
|
rexbidva |
⊢ ( 𝐺 ∈ UPGraph → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |
93 |
3 6 92
|
3bitrd |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ∧ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝑎 = ( 𝑝 ‘ 0 ) ∧ 𝑏 = ( 𝑝 ‘ 1 ) ∧ 𝑐 = ( 𝑝 ‘ 2 ) ) ) ) ) ) |