Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2on.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
elwwlks2ons3 |
⊢ ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) |
3 |
1
|
s3wwlks2on |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
4 |
|
breq2 |
⊢ ( 〈“ 𝐴 𝑏 𝐶 ”〉 = 𝑊 → ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉 ↔ 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) |
5 |
4
|
eqcoms |
⊢ ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 → ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉 ↔ 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 → ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
7 |
6
|
exbidv |
⊢ ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
8 |
3 7
|
sylan9bb |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ) → ( 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
9 |
8
|
pm5.32da |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ↔ ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
10 |
9
|
rexbidv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
11 |
2 10
|
syl5bb |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑊 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |