Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2s3.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlknbp1 |
⊢ ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) → ( 2 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) ) |
3 |
1
|
wrdeqi |
⊢ Word 𝑉 = Word ( Vtx ‘ 𝐺 ) |
4 |
3
|
eleq2i |
⊢ ( 𝑊 ∈ Word 𝑉 ↔ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
5 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
6 |
5
|
eqeq2i |
⊢ ( ( ♯ ‘ 𝑊 ) = 3 ↔ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) |
7 |
4 6
|
anbi12i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) ) |
8 |
|
wrdl3s3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 3 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
9 |
7 8
|
sylbb1 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
10 |
9
|
3adant1 |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 2 + 1 ) ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |
11 |
2 10
|
syl |
⊢ ( 𝑊 ∈ ( 2 WWalksN 𝐺 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝑊 = 〈“ 𝑎 𝑏 𝑐 ”〉 ) |