| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2s3.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  →  ( 2  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) ) ) | 
						
							| 3 | 1 | wrdeqi | ⊢ Word  𝑉  =  Word  ( Vtx ‘ 𝐺 ) | 
						
							| 4 | 3 | eleq2i | ⊢ ( 𝑊  ∈  Word  𝑉  ↔  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 6 | 5 | eqeq2i | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  ↔  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) ) | 
						
							| 7 | 4 6 | anbi12i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ↔  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) ) ) | 
						
							| 8 |  | wrdl3s3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 9 | 7 8 | sylbb1 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 2  +  1 ) )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) |