Metamath Proof Explorer


Theorem elxnn0

Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion elxnn0 ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0𝐴 = +∞ ) )

Proof

Step Hyp Ref Expression
1 df-xnn0 0* = ( ℕ0 ∪ { +∞ } )
2 1 eleq2i ( 𝐴 ∈ ℕ0*𝐴 ∈ ( ℕ0 ∪ { +∞ } ) )
3 elun ( 𝐴 ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( 𝐴 ∈ ℕ0𝐴 ∈ { +∞ } ) )
4 pnfex +∞ ∈ V
5 4 elsn2 ( 𝐴 ∈ { +∞ } ↔ 𝐴 = +∞ )
6 5 orbi2i ( ( 𝐴 ∈ ℕ0𝐴 ∈ { +∞ } ) ↔ ( 𝐴 ∈ ℕ0𝐴 = +∞ ) )
7 2 3 6 3bitri ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0𝐴 = +∞ ) )