Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xp | ⊢ ( 𝐵 × 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } ) |
| 3 | elopab | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |