Step |
Hyp |
Ref |
Expression |
1 |
|
elxp |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
2 |
|
sneq |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → { 𝐴 } = { 〈 𝑥 , 𝑦 〉 } ) |
3 |
2
|
rneqd |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ran { 𝐴 } = ran { 〈 𝑥 , 𝑦 〉 } ) |
4 |
3
|
unieqd |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∪ ran { 𝐴 } = ∪ ran { 〈 𝑥 , 𝑦 〉 } ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
5 6
|
op2nda |
⊢ ∪ ran { 〈 𝑥 , 𝑦 〉 } = 𝑦 |
8 |
4 7
|
eqtr2di |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → 𝑦 = ∪ ran { 𝐴 } ) |
9 |
8
|
pm4.71ri |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ↔ ( 𝑦 = ∪ ran { 𝐴 } ∧ 𝐴 = 〈 𝑥 , 𝑦 〉 ) ) |
10 |
9
|
anbi1i |
⊢ ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑦 = ∪ ran { 𝐴 } ∧ 𝐴 = 〈 𝑥 , 𝑦 〉 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑦 = ∪ ran { 𝐴 } ∧ 𝐴 = 〈 𝑥 , 𝑦 〉 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑦 = ∪ ran { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
12 |
10 11
|
bitri |
⊢ ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑦 = ∪ ran { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ∃ 𝑦 ( 𝑦 = ∪ ran { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
14 |
|
snex |
⊢ { 𝐴 } ∈ V |
15 |
14
|
rnex |
⊢ ran { 𝐴 } ∈ V |
16 |
15
|
uniex |
⊢ ∪ ran { 𝐴 } ∈ V |
17 |
|
opeq2 |
⊢ ( 𝑦 = ∪ ran { 𝐴 } → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑦 = ∪ ran { 𝐴 } → ( 𝐴 = 〈 𝑥 , 𝑦 〉 ↔ 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ) ) |
19 |
|
eleq1 |
⊢ ( 𝑦 = ∪ ran { 𝐴 } → ( 𝑦 ∈ 𝐶 ↔ ∪ ran { 𝐴 } ∈ 𝐶 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑦 = ∪ ran { 𝐴 } → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝑦 = ∪ ran { 𝐴 } → ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) ) |
22 |
16 21
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = ∪ ran { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ↔ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
23 |
13 22
|
bitri |
⊢ ( ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
24 |
|
sneq |
⊢ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 → { 𝐴 } = { 〈 𝑥 , ∪ ran { 𝐴 } 〉 } ) |
25 |
24
|
dmeqd |
⊢ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 → dom { 𝐴 } = dom { 〈 𝑥 , ∪ ran { 𝐴 } 〉 } ) |
26 |
25
|
unieqd |
⊢ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 → ∪ dom { 𝐴 } = ∪ dom { 〈 𝑥 , ∪ ran { 𝐴 } 〉 } ) |
27 |
5 16
|
op1sta |
⊢ ∪ dom { 〈 𝑥 , ∪ ran { 𝐴 } 〉 } = 𝑥 |
28 |
26 27
|
eqtr2di |
⊢ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 → 𝑥 = ∪ dom { 𝐴 } ) |
29 |
28
|
pm4.71ri |
⊢ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ↔ ( 𝑥 = ∪ dom { 𝐴 } ∧ 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ) ) |
30 |
29
|
anbi1i |
⊢ ( ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ↔ ( ( 𝑥 = ∪ dom { 𝐴 } ∧ 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
31 |
|
anass |
⊢ ( ( ( 𝑥 = ∪ dom { 𝐴 } ∧ 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ↔ ( 𝑥 = ∪ dom { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) ) |
32 |
23 30 31
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 = ∪ dom { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) ) |
33 |
32
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ∃ 𝑥 ( 𝑥 = ∪ dom { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) ) |
34 |
14
|
dmex |
⊢ dom { 𝐴 } ∈ V |
35 |
34
|
uniex |
⊢ ∪ dom { 𝐴 } ∈ V |
36 |
|
opeq1 |
⊢ ( 𝑥 = ∪ dom { 𝐴 } → 〈 𝑥 , ∪ ran { 𝐴 } 〉 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ) |
37 |
36
|
eqeq2d |
⊢ ( 𝑥 = ∪ dom { 𝐴 } → ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ↔ 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ) ) |
38 |
|
eleq1 |
⊢ ( 𝑥 = ∪ dom { 𝐴 } → ( 𝑥 ∈ 𝐵 ↔ ∪ dom { 𝐴 } ∈ 𝐵 ) ) |
39 |
38
|
anbi1d |
⊢ ( 𝑥 = ∪ dom { 𝐴 } → ( ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ↔ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
40 |
37 39
|
anbi12d |
⊢ ( 𝑥 = ∪ dom { 𝐴 } → ( ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ↔ ( 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ∧ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) ) |
41 |
35 40
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ∪ dom { 𝐴 } ∧ ( 𝐴 = 〈 𝑥 , ∪ ran { 𝐴 } 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) ↔ ( 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ∧ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
42 |
1 33 41
|
3bitri |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ∧ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |