Step |
Hyp |
Ref |
Expression |
1 |
|
elxp4 |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ∧ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
2 |
|
1stval |
⊢ ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } |
3 |
|
2ndval |
⊢ ( 2nd ‘ 𝐴 ) = ∪ ran { 𝐴 } |
4 |
2 3
|
opeq12i |
⊢ 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 |
5 |
4
|
eqeq2i |
⊢ ( 𝐴 = 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ↔ 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ) |
6 |
2
|
eleq1i |
⊢ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ↔ ∪ dom { 𝐴 } ∈ 𝐵 ) |
7 |
3
|
eleq1i |
⊢ ( ( 2nd ‘ 𝐴 ) ∈ 𝐶 ↔ ∪ ran { 𝐴 } ∈ 𝐶 ) |
8 |
6 7
|
anbi12i |
⊢ ( ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ↔ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) |
9 |
5 8
|
anbi12i |
⊢ ( ( 𝐴 = 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ↔ ( 𝐴 = 〈 ∪ dom { 𝐴 } , ∪ ran { 𝐴 } 〉 ∧ ( ∪ dom { 𝐴 } ∈ 𝐵 ∧ ∪ ran { 𝐴 } ∈ 𝐶 ) ) ) |
10 |
1 9
|
bitr4i |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 = 〈 ( 1st ‘ 𝐴 ) , ( 2nd ‘ 𝐴 ) 〉 ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) ) ) |