Metamath Proof Explorer


Theorem elxp7

Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 . (Contributed by NM, 19-Aug-2006)

Ref Expression
Assertion elxp7 ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elxp6 ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 = ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )
2 fvex ( 1st𝐴 ) ∈ V
3 fvex ( 2nd𝐴 ) ∈ V
4 2 3 pm3.2i ( ( 1st𝐴 ) ∈ V ∧ ( 2nd𝐴 ) ∈ V )
5 elxp6 ( 𝐴 ∈ ( V × V ) ↔ ( 𝐴 = ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ ∧ ( ( 1st𝐴 ) ∈ V ∧ ( 2nd𝐴 ) ∈ V ) ) )
6 4 5 mpbiran2 ( 𝐴 ∈ ( V × V ) ↔ 𝐴 = ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ )
7 6 anbi1i ( ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) ↔ ( 𝐴 = ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )
8 1 7 bitr4i ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st𝐴 ) ∈ 𝐵 ∧ ( 2nd𝐴 ) ∈ 𝐶 ) ) )