Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxrge0 | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ≤ +∞ ) ) | |
| 2 | 0xr | ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) |
| 6 | pnfge | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ +∞ ) |
| 8 | 7 | pm4.71i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ≤ +∞ ) ) |
| 9 | 1 5 8 | 3bitr4i | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |