Metamath Proof Explorer


Theorem elxrge0

Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion elxrge0 ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 ≤ +∞ ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ≤ +∞ ) )
2 0xr 0 ∈ ℝ*
3 pnfxr +∞ ∈ ℝ*
4 elicc1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 ≤ +∞ ) ) )
5 2 3 4 mp2an ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 ≤ +∞ ) )
6 pnfge ( 𝐴 ∈ ℝ*𝐴 ≤ +∞ )
7 6 adantr ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ +∞ )
8 7 pm4.71i ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ∧ 𝐴 ≤ +∞ ) )
9 1 5 8 3bitr4i ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) )