| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0 |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 2 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 4 |
|
1nn |
⊢ 1 ∈ ℕ |
| 5 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℕ ) |
| 6 |
|
recn |
⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 9 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 10 |
7 8 9
|
sylancl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 11 |
10
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
| 12 |
|
rspceov |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 13 |
3 5 11 12
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 14 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 1 ∈ ℕ ) |
| 15 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 16 |
|
negsub |
⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 1 + - 𝑁 ) = ( 1 − 𝑁 ) ) |
| 17 |
8 15 16
|
sylancr |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 + - 𝑁 ) = ( 1 − 𝑁 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ0 ) |
| 19 |
|
nnnn0addcl |
⊢ ( ( 1 ∈ ℕ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 + - 𝑁 ) ∈ ℕ ) |
| 20 |
4 18 19
|
sylancr |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 + - 𝑁 ) ∈ ℕ ) |
| 21 |
17 20
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 − 𝑁 ) ∈ ℕ ) |
| 22 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 1 − ( 1 − 𝑁 ) ) = 𝑁 ) |
| 23 |
8 15 22
|
sylancr |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 − ( 1 − 𝑁 ) ) = 𝑁 ) |
| 24 |
23
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 = ( 1 − ( 1 − 𝑁 ) ) ) |
| 25 |
|
rspceov |
⊢ ( ( 1 ∈ ℕ ∧ ( 1 − 𝑁 ) ∈ ℕ ∧ 𝑁 = ( 1 − ( 1 − 𝑁 ) ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 26 |
14 21 24 25
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 27 |
13 26
|
jaodan |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 28 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
| 29 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 30 |
|
resubcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
| 31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
| 32 |
|
letric |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ) |
| 33 |
29 28 32
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ) |
| 34 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
| 35 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
| 36 |
|
nn0sub |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 37 |
34 35 36
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 38 |
|
nn0sub |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ0 ) ) |
| 39 |
35 34 38
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ0 ) ) |
| 40 |
|
nncn |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) |
| 41 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 42 |
|
negsubdi2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → - ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) |
| 43 |
40 41 42
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → - ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) |
| 44 |
43
|
eleq1d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( - ( 𝑥 − 𝑦 ) ∈ ℕ0 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ0 ) ) |
| 45 |
39 44
|
bitr4d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ≤ 𝑦 ↔ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 46 |
37 45
|
orbi12d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) |
| 47 |
33 46
|
mpbid |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 48 |
31 47
|
jca |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 − 𝑦 ) ∈ ℝ ∧ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) |
| 49 |
|
eleq1 |
⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℝ ↔ ( 𝑥 − 𝑦 ) ∈ ℝ ) ) |
| 50 |
|
eleq1 |
⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℕ0 ↔ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 51 |
|
negeq |
⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → - 𝑁 = - ( 𝑥 − 𝑦 ) ) |
| 52 |
51
|
eleq1d |
⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( - 𝑁 ∈ ℕ0 ↔ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 53 |
50 52
|
orbi12d |
⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ↔ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) |
| 54 |
49 53
|
anbi12d |
⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ↔ ( ( 𝑥 − 𝑦 ) ∈ ℝ ∧ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) ) |
| 55 |
48 54
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) ) |
| 56 |
55
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 57 |
27 56
|
impbii |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 58 |
1 57
|
bitri |
⊢ ( 𝑁 ∈ ℤ ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |