Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
2 |
|
3orrot |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
3 |
|
3orass |
⊢ ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
4 |
2 3
|
bitri |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
5 |
|
elnn0 |
⊢ ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ) |
6 |
|
recn |
⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) |
7 |
6
|
negeq0d |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
8 |
7
|
orbi2d |
⊢ ( 𝑁 ∈ ℝ → ( ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ) ) |
9 |
5 8
|
bitr4id |
⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
10 |
9
|
orbi2d |
⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
11 |
4 10
|
bitr4id |
⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |
12 |
11
|
pm5.32i |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |
13 |
1 12
|
bitri |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ0 ) ) ) |