Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
2 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
4 |
|
elnn0 |
⊢ ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ) |
5 |
|
recn |
⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) |
6 |
|
0cn |
⊢ 0 ∈ ℂ |
7 |
|
negcon1 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 0 ∈ ℂ ) → ( - 𝑁 = 0 ↔ - 0 = 𝑁 ) ) |
8 |
5 6 7
|
sylancl |
⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 = 0 ↔ - 0 = 𝑁 ) ) |
9 |
|
neg0 |
⊢ - 0 = 0 |
10 |
9
|
eqeq1i |
⊢ ( - 0 = 𝑁 ↔ 0 = 𝑁 ) |
11 |
|
eqcom |
⊢ ( 0 = 𝑁 ↔ 𝑁 = 0 ) |
12 |
10 11
|
bitri |
⊢ ( - 0 = 𝑁 ↔ 𝑁 = 0 ) |
13 |
8 12
|
bitrdi |
⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 = 0 ↔ 𝑁 = 0 ) ) |
14 |
13
|
orbi2d |
⊢ ( 𝑁 ∈ ℝ → ( ( - 𝑁 ∈ ℕ ∨ - 𝑁 = 0 ) ↔ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
15 |
4 14
|
syl5bb |
⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 ∈ ℕ0 ↔ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
16 |
3 15
|
orbi12d |
⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ↔ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
17 |
|
3orass |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 = 0 ∨ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
18 |
|
orcom |
⊢ ( ( 𝑁 = 0 ∨ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ∨ 𝑁 = 0 ) ) |
19 |
|
orordir |
⊢ ( ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ∨ 𝑁 = 0 ) ↔ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
20 |
17 18 19
|
3bitrri |
⊢ ( ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) |
21 |
16 20
|
bitr2di |
⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
22 |
21
|
pm5.32i |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
23 |
1 22
|
bitri |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |