Metamath Proof Explorer


Theorem embantd

Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013)

Ref Expression
Hypotheses embantd.1 ( 𝜑𝜓 )
embantd.2 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion embantd ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 embantd.1 ( 𝜑𝜓 )
2 embantd.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 2 imim2d ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜓𝜃 ) ) )
4 1 3 mpid ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )