Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
2 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
3 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 1 / 𝑘 ) = ( 1 / 𝑛 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 1 + ( 1 / 𝑘 ) ) = ( 1 + ( 1 / 𝑛 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑘 = 𝑛 → ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
7 |
4 6
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) = ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
9 |
1 2 3 8
|
emcllem7 |
⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) : ℕ ⟶ ( γ [,] 1 ) ∧ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
10 |
9
|
simp1i |
⊢ γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) |