Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
2 |
|
emcl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
3 |
|
fzfid |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) |
4 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) |
5 |
4
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
6 |
5
|
nnrecred |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
7 |
3 6
|
fsumrecl |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) ∈ ℝ ) |
8 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
9 |
8
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ 𝑛 ) ∈ ℝ ) |
10 |
7 9
|
resubcld |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ∈ ℝ ) |
11 |
1 10
|
fmpti |
⊢ 𝐹 : ℕ ⟶ ℝ |
12 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
13 |
12
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
14 |
13
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
15 |
7 14
|
resubcld |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
16 |
2 15
|
fmpti |
⊢ 𝐺 : ℕ ⟶ ℝ |
17 |
11 16
|
pm3.2i |
⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |