Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
2 |
|
emcl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
3 |
|
emcl.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
7 |
|
divcnv |
⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
8 |
6 7
|
mp1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
9 |
|
nnex |
⊢ ℕ ∈ V |
10 |
9
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ∈ V |
11 |
3 10
|
eqeltri |
⊢ 𝐻 ∈ V |
12 |
11
|
a1i |
⊢ ( ⊤ → 𝐻 ∈ V ) |
13 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) |
14 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) |
15 |
|
ovex |
⊢ ( 1 / 𝑚 ) ∈ V |
16 |
13 14 15
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) = ( 1 / 𝑚 ) ) |
17 |
16
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) = ( 1 / 𝑚 ) ) |
18 |
|
nnrecre |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) |
19 |
18
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ ) |
20 |
17 19
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) ∈ ℝ ) |
21 |
13
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
23 |
|
fvex |
⊢ ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ V |
24 |
22 3 23
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝐻 ‘ 𝑚 ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
26 |
|
1rp |
⊢ 1 ∈ ℝ+ |
27 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
28 |
27
|
adantl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
29 |
28
|
rpreccld |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ+ ) |
30 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝑚 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
31 |
26 29 30
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
32 |
31
|
rpred |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ ) |
33 |
|
1re |
⊢ 1 ∈ ℝ |
34 |
|
ltaddrp |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑚 ) ∈ ℝ+ ) → 1 < ( 1 + ( 1 / 𝑚 ) ) ) |
35 |
33 29 34
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → 1 < ( 1 + ( 1 / 𝑚 ) ) ) |
36 |
32 35
|
rplogcld |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℝ+ ) |
37 |
25 36
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ+ ) |
38 |
37
|
rpred |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ ) |
39 |
31
|
relogcld |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℝ ) |
40 |
|
efgt1p |
⊢ ( ( 1 / 𝑚 ) ∈ ℝ+ → ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ) |
41 |
29 40
|
syl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ) |
42 |
19
|
rpefcld |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( exp ‘ ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
43 |
|
logltb |
⊢ ( ( ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ∧ ( exp ‘ ( 1 / 𝑚 ) ) ∈ ℝ+ ) → ( ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ↔ ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) ) ) |
44 |
31 42 43
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ↔ ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) ) ) |
45 |
41 44
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) ) |
46 |
19
|
relogefd |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) = ( 1 / 𝑚 ) ) |
47 |
45 46
|
breqtrd |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( 1 / 𝑚 ) ) |
48 |
39 19 47
|
ltled |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ≤ ( 1 / 𝑚 ) ) |
49 |
48 25 17
|
3brtr4d |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) ) |
50 |
37
|
rpge0d |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( 𝐻 ‘ 𝑚 ) ) |
51 |
4 5 8 12 20 38 49 50
|
climsqz2 |
⊢ ( ⊤ → 𝐻 ⇝ 0 ) |
52 |
51
|
mptru |
⊢ 𝐻 ⇝ 0 |