| Step | Hyp | Ref | Expression | 
						
							| 1 |  | log2le1 | ⊢ ( log ‘ 2 )  <  1 | 
						
							| 2 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 3 |  | relogcl | ⊢ ( 2  ∈  ℝ+  →  ( log ‘ 2 )  ∈  ℝ ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( log ‘ 2 )  ∈  ℝ | 
						
							| 5 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 6 | 4 5 | posdifi | ⊢ ( ( log ‘ 2 )  <  1  ↔  0  <  ( 1  −  ( log ‘ 2 ) ) ) | 
						
							| 7 | 1 6 | mpbi | ⊢ 0  <  ( 1  −  ( log ‘ 2 ) ) | 
						
							| 8 |  | emcl | ⊢ γ  ∈  ( ( 1  −  ( log ‘ 2 ) ) [,] 1 ) | 
						
							| 9 | 5 4 | resubcli | ⊢ ( 1  −  ( log ‘ 2 ) )  ∈  ℝ | 
						
							| 10 | 9 5 | elicc2i | ⊢ ( γ  ∈  ( ( 1  −  ( log ‘ 2 ) ) [,] 1 )  ↔  ( γ  ∈  ℝ  ∧  ( 1  −  ( log ‘ 2 ) )  ≤  γ  ∧  γ  ≤  1 ) ) | 
						
							| 11 | 10 | simp2bi | ⊢ ( γ  ∈  ( ( 1  −  ( log ‘ 2 ) ) [,] 1 )  →  ( 1  −  ( log ‘ 2 ) )  ≤  γ ) | 
						
							| 12 | 8 11 | ax-mp | ⊢ ( 1  −  ( log ‘ 2 ) )  ≤  γ | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 15 | 13 9 14 | ltletri | ⊢ ( ( 0  <  ( 1  −  ( log ‘ 2 ) )  ∧  ( 1  −  ( log ‘ 2 ) )  ≤  γ )  →  0  <  γ ) | 
						
							| 16 | 7 12 15 | mp2an | ⊢ 0  <  γ |