Description: Shorter proof of en0 , depending on ax-pow and ax-un . (Contributed by NM, 27-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | en0ALT | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren | ⊢ ( 𝐴 ≈ ∅ ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ ) | |
2 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ∅ → ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 ) | |
3 | f1o00 | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 ↔ ( ◡ 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) | |
4 | 3 | simprbi | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 → 𝐴 = ∅ ) |
5 | 2 4 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ∅ → 𝐴 = ∅ ) |
6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ → 𝐴 = ∅ ) |
7 | 1 6 | sylbi | ⊢ ( 𝐴 ≈ ∅ → 𝐴 = ∅ ) |
8 | 0ex | ⊢ ∅ ∈ V | |
9 | 8 | enref | ⊢ ∅ ≈ ∅ |
10 | breq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ≈ ∅ ↔ ∅ ≈ ∅ ) ) | |
11 | 9 10 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ≈ ∅ ) |
12 | 7 11 | impbii | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |