| Step |
Hyp |
Ref |
Expression |
| 1 |
|
en1 |
⊢ ( 𝐵 ≈ 1o ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) |
| 2 |
|
eleq2 |
⊢ ( 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ { 𝑥 } ) ) |
| 3 |
|
elsni |
⊢ ( 𝐴 ∈ { 𝑥 } → 𝐴 = 𝑥 ) |
| 4 |
3
|
sneqd |
⊢ ( 𝐴 ∈ { 𝑥 } → { 𝐴 } = { 𝑥 } ) |
| 5 |
2 4
|
biimtrdi |
⊢ ( 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 → { 𝐴 } = { 𝑥 } ) ) |
| 6 |
5
|
imp |
⊢ ( ( 𝐵 = { 𝑥 } ∧ 𝐴 ∈ 𝐵 ) → { 𝐴 } = { 𝑥 } ) |
| 7 |
|
eqtr3 |
⊢ ( ( 𝐵 = { 𝑥 } ∧ { 𝐴 } = { 𝑥 } ) → 𝐵 = { 𝐴 } ) |
| 8 |
6 7
|
syldan |
⊢ ( ( 𝐵 = { 𝑥 } ∧ 𝐴 ∈ 𝐵 ) → 𝐵 = { 𝐴 } ) |
| 9 |
8
|
ex |
⊢ ( 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 → 𝐵 = { 𝐴 } ) ) |
| 10 |
9
|
exlimiv |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ( 𝐴 ∈ 𝐵 → 𝐵 = { 𝐴 } ) ) |
| 11 |
1 10
|
sylbi |
⊢ ( 𝐵 ≈ 1o → ( 𝐴 ∈ 𝐵 → 𝐵 = { 𝐴 } ) ) |
| 12 |
11
|
impcom |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 𝐴 } ) |