Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr . (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | en1eqsnbi | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝐴 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1eqsn | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 𝐴 } ) | |
2 | 1 | ex | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ≈ 1o → 𝐵 = { 𝐴 } ) ) |
3 | ensn1g | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ≈ 1o ) | |
4 | breq1 | ⊢ ( 𝐵 = { 𝐴 } → ( 𝐵 ≈ 1o ↔ { 𝐴 } ≈ 1o ) ) | |
5 | 3 4 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 = { 𝐴 } → 𝐵 ≈ 1o ) ) |
6 | 2 5 | impbid | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝐴 } ) ) |