Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr . (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1eqsnbi | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝐴 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | en1eqsn | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o ) → 𝐵 = { 𝐴 } ) | |
| 2 | 1 | ex | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ≈ 1o → 𝐵 = { 𝐴 } ) ) | 
| 3 | ensn1g | ⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ≈ 1o ) | |
| 4 | breq1 | ⊢ ( 𝐵 = { 𝐴 } → ( 𝐵 ≈ 1o ↔ { 𝐴 } ≈ 1o ) ) | |
| 5 | 3 4 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 = { 𝐴 } → 𝐵 ≈ 1o ) ) | 
| 6 | 2 5 | impbid | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ≈ 1o ↔ 𝐵 = { 𝐴 } ) ) |