Metamath Proof Explorer


Theorem en1eqsnbi

Description: A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr . (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)

Ref Expression
Assertion en1eqsnbi ( 𝐴𝐵 → ( 𝐵 ≈ 1o𝐵 = { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 en1eqsn ( ( 𝐴𝐵𝐵 ≈ 1o ) → 𝐵 = { 𝐴 } )
2 1 ex ( 𝐴𝐵 → ( 𝐵 ≈ 1o𝐵 = { 𝐴 } ) )
3 ensn1g ( 𝐴𝐵 → { 𝐴 } ≈ 1o )
4 breq1 ( 𝐵 = { 𝐴 } → ( 𝐵 ≈ 1o ↔ { 𝐴 } ≈ 1o ) )
5 3 4 syl5ibrcom ( 𝐴𝐵 → ( 𝐵 = { 𝐴 } → 𝐵 ≈ 1o ) )
6 2 5 impbid ( 𝐴𝐵 → ( 𝐵 ≈ 1o𝐵 = { 𝐴 } ) )