Metamath Proof Explorer


Theorem en1top

Description: { (/) } is the only topology with one element. (Contributed by FL, 18-Aug-2008)

Ref Expression
Assertion en1top ( 𝐽 ∈ Top → ( 𝐽 ≈ 1o𝐽 = { ∅ } ) )

Proof

Step Hyp Ref Expression
1 0opn ( 𝐽 ∈ Top → ∅ ∈ 𝐽 )
2 en1eqsn ( ( ∅ ∈ 𝐽𝐽 ≈ 1o ) → 𝐽 = { ∅ } )
3 2 ex ( ∅ ∈ 𝐽 → ( 𝐽 ≈ 1o𝐽 = { ∅ } ) )
4 1 3 syl ( 𝐽 ∈ Top → ( 𝐽 ≈ 1o𝐽 = { ∅ } ) )
5 id ( 𝐽 = { ∅ } → 𝐽 = { ∅ } )
6 0ex ∅ ∈ V
7 6 ensn1 { ∅ } ≈ 1o
8 5 7 eqbrtrdi ( 𝐽 = { ∅ } → 𝐽 ≈ 1o )
9 4 8 impbid1 ( 𝐽 ∈ Top → ( 𝐽 ≈ 1o𝐽 = { ∅ } ) )