Metamath Proof Explorer


Theorem en1uniel

Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015) Avoid ax-un . (Revised by BTernaryTau, 24-Sep-2024)

Ref Expression
Assertion en1uniel ( 𝑆 ≈ 1o 𝑆𝑆 )

Proof

Step Hyp Ref Expression
1 en1b ( 𝑆 ≈ 1o𝑆 = { 𝑆 } )
2 eqsnuniex ( 𝑆 = { 𝑆 } → 𝑆 ∈ V )
3 1 2 sylbi ( 𝑆 ≈ 1o 𝑆 ∈ V )
4 snidg ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆 } )
5 3 4 syl ( 𝑆 ≈ 1o 𝑆 ∈ { 𝑆 } )
6 1 biimpi ( 𝑆 ≈ 1o𝑆 = { 𝑆 } )
7 5 6 eleqtrrd ( 𝑆 ≈ 1o 𝑆𝑆 )