Metamath Proof Explorer


Theorem en2d

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)

Ref Expression
Hypotheses en2d.1 ( 𝜑𝐴𝑉 )
en2d.2 ( 𝜑𝐵𝑊 )
en2d.3 ( 𝜑 → ( 𝑥𝐴𝐶𝑋 ) )
en2d.4 ( 𝜑 → ( 𝑦𝐵𝐷𝑌 ) )
en2d.5 ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐶 ) ↔ ( 𝑦𝐵𝑥 = 𝐷 ) ) )
Assertion en2d ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 en2d.1 ( 𝜑𝐴𝑉 )
2 en2d.2 ( 𝜑𝐵𝑊 )
3 en2d.3 ( 𝜑 → ( 𝑥𝐴𝐶𝑋 ) )
4 en2d.4 ( 𝜑 → ( 𝑦𝐵𝐷𝑌 ) )
5 en2d.5 ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐶 ) ↔ ( 𝑦𝐵𝑥 = 𝐷 ) ) )
6 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
7 3 imp ( ( 𝜑𝑥𝐴 ) → 𝐶𝑋 )
8 4 imp ( ( 𝜑𝑦𝐵 ) → 𝐷𝑌 )
9 6 7 8 5 f1od ( 𝜑 → ( 𝑥𝐴𝐶 ) : 𝐴1-1-onto𝐵 )
10 f1oen2g ( ( 𝐴𝑉𝐵𝑊 ∧ ( 𝑥𝐴𝐶 ) : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )
11 1 2 9 10 syl3anc ( 𝜑𝐴𝐵 )