Step |
Hyp |
Ref |
Expression |
1 |
|
2onn |
⊢ 2o ∈ ω |
2 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
3 |
1 2
|
ax-mp |
⊢ 2o ∈ Fin |
4 |
|
enfi |
⊢ ( 𝑃 ≈ 2o → ( 𝑃 ∈ Fin ↔ 2o ∈ Fin ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝑃 ≈ 2o → 𝑃 ∈ Fin ) |
6 |
5
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ Fin ) |
7 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ 𝑃 ) |
8 |
|
1onn |
⊢ 1o ∈ ω |
9 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) |
10 |
|
df-2o |
⊢ 2o = suc 1o |
11 |
9 10
|
breqtrdi |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ suc 1o ) |
12 |
|
dif1en |
⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
13 |
8 11 7 12
|
mp3an2i |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
14 |
|
en1uniel |
⊢ ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
16 |
|
eldifsn |
⊢ ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ↔ ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ∧ ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) ) |
17 |
15 16
|
sylib |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ∧ ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) ) |
18 |
17
|
simpld |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ) |
19 |
7 18
|
prssd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ⊆ 𝑃 ) |
20 |
17
|
simprd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |
21 |
20
|
necomd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) |
22 |
|
pr2nelem |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ 𝑃 ∧ 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 2o ) |
23 |
7 18 21 22
|
syl3anc |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 2o ) |
24 |
|
ensym |
⊢ ( 𝑃 ≈ 2o → 2o ≈ 𝑃 ) |
25 |
24
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 2o ≈ 𝑃 ) |
26 |
|
entr |
⊢ ( ( { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 2o ∧ 2o ≈ 𝑃 ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 𝑃 ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 𝑃 ) |
28 |
|
fisseneq |
⊢ ( ( 𝑃 ∈ Fin ∧ { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ⊆ 𝑃 ∧ { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ≈ 𝑃 ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } = 𝑃 ) |
29 |
6 19 27 28
|
syl3anc |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } = 𝑃 ) |
30 |
29
|
eqcomd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ) |