| Step | Hyp | Ref | Expression | 
						
							| 1 |  | en2eleq | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑃  =  { 𝑋 ,  ∪  ( 𝑃  ∖  { 𝑋 } ) } ) | 
						
							| 2 |  | prcom | ⊢ { 𝑋 ,  ∪  ( 𝑃  ∖  { 𝑋 } ) }  =  { ∪  ( 𝑃  ∖  { 𝑋 } ) ,  𝑋 } | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑃  =  { ∪  ( 𝑃  ∖  { 𝑋 } ) ,  𝑋 } ) | 
						
							| 4 | 3 | difeq1d | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  =  ( { ∪  ( 𝑃  ∖  { 𝑋 } ) ,  𝑋 }  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } ) ) | 
						
							| 5 |  | difprsnss | ⊢ ( { ∪  ( 𝑃  ∖  { 𝑋 } ) ,  𝑋 }  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  ⊆  { 𝑋 } | 
						
							| 6 | 4 5 | eqsstrdi | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  ⊆  { 𝑋 } ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑋  ∈  𝑃 ) | 
						
							| 8 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑃  ≈  2o ) | 
						
							| 10 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 11 | 9 10 | breqtrdi | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑃  ≈  suc  1o ) | 
						
							| 12 |  | dif1ennn | ⊢ ( ( 1o  ∈  ω  ∧  𝑃  ≈  suc  1o  ∧  𝑋  ∈  𝑃 )  →  ( 𝑃  ∖  { 𝑋 } )  ≈  1o ) | 
						
							| 13 | 8 11 7 12 | mp3an2i | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ( 𝑃  ∖  { 𝑋 } )  ≈  1o ) | 
						
							| 14 |  | en1uniel | ⊢ ( ( 𝑃  ∖  { 𝑋 } )  ≈  1o  →  ∪  ( 𝑃  ∖  { 𝑋 } )  ∈  ( 𝑃  ∖  { 𝑋 } ) ) | 
						
							| 15 |  | eldifsni | ⊢ ( ∪  ( 𝑃  ∖  { 𝑋 } )  ∈  ( 𝑃  ∖  { 𝑋 } )  →  ∪  ( 𝑃  ∖  { 𝑋 } )  ≠  𝑋 ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ∪  ( 𝑃  ∖  { 𝑋 } )  ≠  𝑋 ) | 
						
							| 17 | 16 | necomd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑋  ≠  ∪  ( 𝑃  ∖  { 𝑋 } ) ) | 
						
							| 18 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  ↔  ( 𝑋  ∈  𝑃  ∧  𝑋  ≠  ∪  ( 𝑃  ∖  { 𝑋 } ) ) ) | 
						
							| 19 | 7 17 18 | sylanbrc | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  𝑋  ∈  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } ) ) | 
						
							| 20 | 19 | snssd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  { 𝑋 }  ⊆  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } ) ) | 
						
							| 21 | 6 20 | eqssd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  =  { 𝑋 } ) | 
						
							| 22 | 21 | unieqd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ∪  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  =  ∪  { 𝑋 } ) | 
						
							| 23 |  | unisng | ⊢ ( 𝑋  ∈  𝑃  →  ∪  { 𝑋 }  =  𝑋 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ∪  { 𝑋 }  =  𝑋 ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑃  ≈  2o )  →  ∪  ( 𝑃  ∖  { ∪  ( 𝑃  ∖  { 𝑋 } ) } )  =  𝑋 ) |