| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝐽 ≈ 2o ) |
| 2 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
| 3 |
2
|
ad2ant2rl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑥 ⊆ 𝑋 ) |
| 4 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑋 = ∅ ) |
| 5 |
|
sseq0 |
⊢ ( ( 𝑥 ⊆ 𝑋 ∧ 𝑋 = ∅ ) → 𝑥 = ∅ ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑥 = ∅ ) |
| 7 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ ( 𝑋 = ∅ ∧ 𝑥 ∈ 𝐽 ) ) → 𝑥 ∈ { ∅ } ) |
| 9 |
8
|
expr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ( 𝑥 ∈ 𝐽 → 𝑥 ∈ { ∅ } ) ) |
| 10 |
9
|
ssrdv |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 ⊆ { ∅ } ) |
| 11 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 12 |
|
0opn |
⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∅ ∈ 𝐽 ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ∅ ∈ 𝐽 ) |
| 15 |
14
|
snssd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → { ∅ } ⊆ 𝐽 ) |
| 16 |
10 15
|
eqssd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 = { ∅ } ) |
| 17 |
|
0ex |
⊢ ∅ ∈ V |
| 18 |
17
|
ensn1 |
⊢ { ∅ } ≈ 1o |
| 19 |
16 18
|
eqbrtrdi |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 ≈ 1o ) |
| 20 |
19
|
olcd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ( 𝐽 = ∅ ∨ 𝐽 ≈ 1o ) ) |
| 21 |
|
sdom2en01 |
⊢ ( 𝐽 ≺ 2o ↔ ( 𝐽 = ∅ ∨ 𝐽 ≈ 1o ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → 𝐽 ≺ 2o ) |
| 23 |
|
sdomnen |
⊢ ( 𝐽 ≺ 2o → ¬ 𝐽 ≈ 2o ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) ∧ 𝑋 = ∅ ) → ¬ 𝐽 ≈ 2o ) |
| 25 |
24
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( 𝑋 = ∅ → ¬ 𝐽 ≈ 2o ) ) |
| 26 |
25
|
necon2ad |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( 𝐽 ≈ 2o → 𝑋 ≠ ∅ ) ) |
| 27 |
1 26
|
mpd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝑋 ≠ ∅ ) |
| 28 |
27
|
necomd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ∅ ≠ 𝑋 ) |
| 29 |
13
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ∅ ∈ 𝐽 ) |
| 30 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝑋 ∈ 𝐽 ) |
| 32 |
|
en2eqpr |
⊢ ( ( 𝐽 ≈ 2o ∧ ∅ ∈ 𝐽 ∧ 𝑋 ∈ 𝐽 ) → ( ∅ ≠ 𝑋 → 𝐽 = { ∅ , 𝑋 } ) ) |
| 33 |
1 29 31 32
|
syl3anc |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( ∅ ≠ 𝑋 → 𝐽 = { ∅ , 𝑋 } ) ) |
| 34 |
28 33
|
mpd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → 𝐽 = { ∅ , 𝑋 } ) |
| 35 |
34 27
|
jca |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ≈ 2o ) → ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) |
| 36 |
|
simprl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → 𝐽 = { ∅ , 𝑋 } ) |
| 37 |
|
simprr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ≠ ∅ ) |
| 38 |
37
|
necomd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → ∅ ≠ 𝑋 ) |
| 39 |
|
enpr2 |
⊢ ( ( ∅ ∈ V ∧ 𝑋 ∈ 𝐽 ∧ ∅ ≠ 𝑋 ) → { ∅ , 𝑋 } ≈ 2o ) |
| 40 |
17 30 38 39
|
mp3an2ani |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → { ∅ , 𝑋 } ≈ 2o ) |
| 41 |
36 40
|
eqbrtrd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) → 𝐽 ≈ 2o ) |
| 42 |
35 41
|
impbida |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ≈ 2o ↔ ( 𝐽 = { ∅ , 𝑋 } ∧ 𝑋 ≠ ∅ ) ) ) |