Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3 | ⊢ ( 𝐴 ≈ 3o → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = { 𝑥 , 𝑦 , 𝑧 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2on | ⊢ 2o ∈ On | |
| 2 | 1 | onordi | ⊢ Ord 2o | 
| 3 | df-3o | ⊢ 3o = suc 2o | |
| 4 | en2 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 2o → ∃ 𝑦 ∃ 𝑧 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 } ) | |
| 5 | tpass | ⊢ { 𝑥 , 𝑦 , 𝑧 } = ( { 𝑥 } ∪ { 𝑦 , 𝑧 } ) | |
| 6 | 5 | enp1ilem | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 } → 𝐴 = { 𝑥 , 𝑦 , 𝑧 } ) ) | 
| 7 | 6 | 2eximdv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 } → ∃ 𝑦 ∃ 𝑧 𝐴 = { 𝑥 , 𝑦 , 𝑧 } ) ) | 
| 8 | 2 3 4 7 | enp1i | ⊢ ( 𝐴 ≈ 3o → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = { 𝑥 , 𝑦 , 𝑧 } ) |