Metamath Proof Explorer


Theorem en3d

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)

Ref Expression
Hypotheses en3d.1 ( 𝜑𝐴𝑉 )
en3d.2 ( 𝜑𝐵𝑊 )
en3d.3 ( 𝜑 → ( 𝑥𝐴𝐶𝐵 ) )
en3d.4 ( 𝜑 → ( 𝑦𝐵𝐷𝐴 ) )
en3d.5 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 = 𝐷𝑦 = 𝐶 ) ) )
Assertion en3d ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 en3d.1 ( 𝜑𝐴𝑉 )
2 en3d.2 ( 𝜑𝐵𝑊 )
3 en3d.3 ( 𝜑 → ( 𝑥𝐴𝐶𝐵 ) )
4 en3d.4 ( 𝜑 → ( 𝑦𝐵𝐷𝐴 ) )
5 en3d.5 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 = 𝐷𝑦 = 𝐶 ) ) )
6 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
7 3 imp ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
8 4 imp ( ( 𝜑𝑦𝐵 ) → 𝐷𝐴 )
9 5 imp ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 = 𝐷𝑦 = 𝐶 ) )
10 6 7 8 9 f1o2d ( 𝜑 → ( 𝑥𝐴𝐶 ) : 𝐴1-1-onto𝐵 )
11 f1oen2g ( ( 𝐴𝑉𝐵𝑊 ∧ ( 𝑥𝐴𝐶 ) : 𝐴1-1-onto𝐵 ) → 𝐴𝐵 )
12 1 2 10 11 syl3anc ( 𝜑𝐴𝐵 )