Step |
Hyp |
Ref |
Expression |
1 |
|
en3d.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
en3d.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
en3d.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
4 |
|
en3d.4 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴 ) ) |
5 |
|
en3d.5 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
7 |
3
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
8 |
4
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝐴 ) |
9 |
5
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) |
10 |
6 7 8 9
|
f1o2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1-onto→ 𝐵 ) |
11 |
|
f1oen2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
12 |
1 2 10 11
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) |