Metamath Proof Explorer


Theorem en3i

Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004)

Ref Expression
Hypotheses en3i.1 𝐴 ∈ V
en3i.2 𝐵 ∈ V
en3i.3 ( 𝑥𝐴𝐶𝐵 )
en3i.4 ( 𝑦𝐵𝐷𝐴 )
en3i.5 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 = 𝐷𝑦 = 𝐶 ) )
Assertion en3i 𝐴𝐵

Proof

Step Hyp Ref Expression
1 en3i.1 𝐴 ∈ V
2 en3i.2 𝐵 ∈ V
3 en3i.3 ( 𝑥𝐴𝐶𝐵 )
4 en3i.4 ( 𝑦𝐵𝐷𝐴 )
5 en3i.5 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 = 𝐷𝑦 = 𝐶 ) )
6 1 a1i ( ⊤ → 𝐴 ∈ V )
7 2 a1i ( ⊤ → 𝐵 ∈ V )
8 3 a1i ( ⊤ → ( 𝑥𝐴𝐶𝐵 ) )
9 4 a1i ( ⊤ → ( 𝑦𝐵𝐷𝐴 ) )
10 5 a1i ( ⊤ → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 = 𝐷𝑦 = 𝐶 ) ) )
11 6 7 8 9 10 en3d ( ⊤ → 𝐴𝐵 )
12 11 mptru 𝐴𝐵