Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | en3i.1 | ⊢ 𝐴 ∈ V | |
en3i.2 | ⊢ 𝐵 ∈ V | ||
en3i.3 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) | ||
en3i.4 | ⊢ ( 𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴 ) | ||
en3i.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) | ||
Assertion | en3i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en3i.1 | ⊢ 𝐴 ∈ V | |
2 | en3i.2 | ⊢ 𝐵 ∈ V | |
3 | en3i.3 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) | |
4 | en3i.4 | ⊢ ( 𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴 ) | |
5 | en3i.5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) | |
6 | 1 | a1i | ⊢ ( ⊤ → 𝐴 ∈ V ) |
7 | 2 | a1i | ⊢ ( ⊤ → 𝐵 ∈ V ) |
8 | 3 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
9 | 4 | a1i | ⊢ ( ⊤ → ( 𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴 ) ) |
10 | 5 | a1i | ⊢ ( ⊤ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) ) |
11 | 6 7 8 9 10 | en3d | ⊢ ( ⊤ → 𝐴 ≈ 𝐵 ) |
12 | 11 | mptru | ⊢ 𝐴 ≈ 𝐵 |