Step |
Hyp |
Ref |
Expression |
1 |
|
noel |
⊢ ¬ 𝐶 ∈ ∅ |
2 |
|
eleq2 |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ ∅ ) ) |
3 |
1 2
|
mtbiri |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
4 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
3 4
|
nsyl |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ 𝐶 ∈ 𝐴 ) |
6 |
5
|
intn3an3d |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
7 |
|
tpex |
⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ V |
8 |
|
zfreg |
⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ∈ V ∧ { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ ) |
9 |
7 8
|
mpan |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ ) |
10 |
|
en3lplem2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
11 |
10
|
com12 |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
12 |
11
|
necon2bd |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) ) |
13 |
12
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
14 |
9 13
|
syl |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
15 |
6 14
|
pm2.61ine |
⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) |