| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2.1 | ⊢ ( ¬  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  ∨  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅ ) | 
						
							| 2 |  | df-ne | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  ↔  ¬  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅ ) | 
						
							| 3 | 2 | bicomi | ⊢ ( ¬  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  ↔  { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅ ) | 
						
							| 4 | 3 | orbi1i | ⊢ ( ( ¬  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  ∨  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅ )  ↔  ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  ∨  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅ ) ) | 
						
							| 5 | 1 4 | mpbi | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  ∨  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅ ) | 
						
							| 6 |  | zfregs2 | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  →  ¬  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 7 |  | en3lplem2VD | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 8 | 7 | alrimiv | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ∀ 𝑥 ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 9 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 ) ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 ) ) | 
						
							| 11 | 10 | con3i | ⊢ ( ¬  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ∃ 𝑦 ( 𝑦  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝑦  ∈  𝑥 )  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 13 |  | idn1 | ⊢ (    { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅    ▶    { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅    ) | 
						
							| 14 |  | noel | ⊢ ¬  𝐶  ∈  ∅ | 
						
							| 15 |  | eleq2 | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  𝐶  ∈  ∅ ) ) | 
						
							| 16 | 15 | notbid | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  →  ( ¬  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  ¬  𝐶  ∈  ∅ ) ) | 
						
							| 17 | 16 | biimprd | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  →  ( ¬  𝐶  ∈  ∅  →  ¬  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ) ) | 
						
							| 18 | 13 14 17 | e10 | ⊢ (    { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅    ▶    ¬  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 }    ) | 
						
							| 19 |  | tpid3g | ⊢ ( 𝐶  ∈  𝐴  →  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ) | 
						
							| 20 | 19 | con3i | ⊢ ( ¬  𝐶  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ¬  𝐶  ∈  𝐴 ) | 
						
							| 21 | 18 20 | e1a | ⊢ (    { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅    ▶    ¬  𝐶  ∈  𝐴    ) | 
						
							| 22 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  𝐶  ∈  𝐴 ) | 
						
							| 23 | 22 | con3i | ⊢ ( ¬  𝐶  ∈  𝐴  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 24 | 21 23 | e1a | ⊢ (    { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅    ▶    ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )    ) | 
						
							| 25 | 24 | in1 | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 26 | 12 25 | jaoi | ⊢ ( ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  ∨  { 𝐴 ,  𝐵 ,  𝐶 }  =  ∅ )  →  ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 27 | 5 26 | ax-mp | ⊢ ¬  ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 ) |