Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.1 |
⊢ ( ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) |
2 |
|
df-ne |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ↔ ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) |
3 |
2
|
bicomi |
⊢ ( ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ↔ { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ) |
4 |
3
|
orbi1i |
⊢ ( ( ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) ↔ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) ) |
5 |
1 4
|
mpbi |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) |
6 |
|
zfregs2 |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ¬ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
7 |
|
en3lplem2VD |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
8 |
7
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
9 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
11 |
10
|
con3i |
⊢ ( ¬ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
12 |
6 11
|
syl |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
13 |
|
idn1 |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) |
14 |
|
noel |
⊢ ¬ 𝐶 ∈ ∅ |
15 |
|
eleq2 |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ ∅ ) ) |
16 |
15
|
notbid |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ¬ 𝐶 ∈ ∅ ) ) |
17 |
16
|
biimprd |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( ¬ 𝐶 ∈ ∅ → ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
18 |
13 14 17
|
e10 |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
19 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
20 |
19
|
con3i |
⊢ ( ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } → ¬ 𝐶 ∈ 𝐴 ) |
21 |
18 20
|
e1a |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ ¬ 𝐶 ∈ 𝐴 ) |
22 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
23 |
22
|
con3i |
⊢ ( ¬ 𝐶 ∈ 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
24 |
21 23
|
e1a |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
25 |
24
|
in1 |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
26 |
12 25
|
jaoi |
⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
27 |
5 26
|
ax-mp |
⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) |